Stochastic Look-ahead Dispatch with Intermittent Renewable Generation

via Progressive Hedging and L-shaped Method

Yingzhong (Gary) Gu, Prof. Le Xie

Department of Electrical and Computer Engineering
Texas A&M University
June 25th, 2014

Contents

1	Background and Motivation
2	Proposed Approach
3	Implementation
4	Conclusion

Key Questions

- Is it necessary to conduct a stochastic economic dispatch for the (near-) real-time operation?
- How to formulate a stochastic look-ahead economic dispatch?
- How to decide when and where in the horizon to apply stochastic programming?
- How to implement an efficient algorithm for realtime operations?

Increasing Renewable Penetration

Challenge of Uncertainty

Source: ERCOT Grid Information

Stochastic Programming

[Birge, et. al., 2011]

minimize $c \cdot x_s$

subject to: $x_s \in \mathcal{Q}_s$

Stochastic Programming Problem

minimize $(c \cdot x) + \sum_{s} \Pr(s)(f_s \cdot y_s)$ (EF)

Multi-Stage Stochastic Programming

subject to: $(x, y_s) \in \mathcal{Q}_s \quad \forall s \in \mathcal{S}$

Necessary Condition

Dynamic Look Ahead Scheduling

Conventional Power System Scheduling (Economic Dispatch):

Source: [Xie et. al., 2011]

min \sum generation cost s.t. system security constraints.

Dynamic Look-ahead Scheduling:

min $\sum \sum$ generation cost over a look-ahead window s.t. system security constraints at each stage.

Multi-stage ramping constraints.

Detailed Mathematical Formulation

Look-ahead Operation Horizon

Uncertainty Responses over Horizon

Although the uncertainties in the longer run are higher, their impacts on system economic risks behave much smaller than in the shorter run.

Mathematical Criterion

Whether to do SLAED? horizon division?

Mathematical Criterion

$$Risk_{total} \approx \sum_{k}^{T} \beta_{k} Risk_{k}$$

Wind Uncertainty

Solar Uncertainty

Load Uncertainty

Contingency Uncertainty

SLAED: Stochastic Look-ahead Economic Dispatch β_k : Adjustment weighting factors

Hybrid Deterministic and Stochastic Horizon

Stochastic Look Ahead Dispatch

$$\min: f = \sum_{k \in T_I} \sum_{i \in G} C_{G_{i,s_0}} P_{i,s_0}^k + \sum_{s \in S} \rho_s \left[\sum_{k \in T_{II}} \sum_{i \in G} C_{G_{i,s}} P_{i,s}^k + R_s^k \right]$$

Objective Function

$$\sum_{i \in C} P_{i,s}^{k} = L_{s}^{k}, k \in T_{I} \cup T_{II}, s \in S \cup \{s_{0}\}$$

$$\sum_{i \in G} P_{SU_{i,s}}^{k} \geqslant SU_{s}^{k}, k \in T_{I} \cup T_{II}, s \in S \cup \{s_{0}\}$$

$$\sum_{i \in G} P_{SD_{i,s}}^{k} \geqslant SD_{s}^{k}, k \in T_{I} \cup T_{II}, s \in S \cup \{s_{0}\}$$

Upward/Downward Short Term Dispatchable Capacity (STDC) Requirement

$$-\boldsymbol{F}_{s}^{k \max} \leqslant \boldsymbol{F}_{s}^{k} \leqslant \boldsymbol{F}_{s}^{k \max}, k \in T_{I} \cup T_{II}, s \in S \cup \{s_{0}\}$$

Branch Flow Constraints

$$-P_{D_i}^R \leqslant \frac{(P_{i,s}^k - P_{i,s}^{k-1})}{\Delta T} \leqslant P_{U_i}^R, i \in G, s \in S \cup \{s_0\}, k \in T_I \cup T_{II}$$

Generators' Ramping Constraints

$$P_{i,s}^{k} + P_{SU_{i,s}}^{k} \leq P_{i,s}^{\max}, i \in G, s \in S \cup \{s_{0}\}, k \in T_{I} \cup T_{II}$$

$$P_{i,s}^k - P_{SD_{i,s}}^k \geqslant P_{i,s}^{\min}, i \in G, s \in S \cup \{s_0\}, k \in T_I \cup T_{II}$$

$$P_{i,s}^{\min} \leqslant P_{i,s}^{k} \leqslant P_{i,s}^{\max}, s \in S \cup \{s_0\}, k \in T_I \cup T_{II}$$

Generators' Capacity Constraints

$$0 \leqslant P_{SU_{i,s}}^k \leqslant P_{Ui}^R \Delta T, s \in S \cup \{s_0\}, k \in T_I \cup T_{II}$$

$$0 \leqslant P_{SD_{i,s}}^k \leqslant P_{Di}^D \Delta T, s \in S \cup \{s_0\}, k \in T_I \cup T_{II}$$

Flowchart

Computation Framework Flowchart

Progressive Hedging Algorithm

[Watson, Woodruff, et. al., 2011]

Variable Fixing

Constraints Removal

Variable Fixing and Constraints Removal

min:
$$f_{TC} = \sum_{i} x_{i} T_{vi} + \sum_{j} y_{j} T_{cj}$$

Minimize the computation time

Subject to

$$\sum_{i} x_{i} \lg P_{vi} \ge \lg \left(1 - C_{v}\right)$$

$$\sum_{j} y_{j} \lg P_{cj} \ge \lg \left(1 - C_{c}\right)$$

$$x_i \in \{0,1\}, y_i \in \{0,1\}$$

Probability Requirement for Variable Fixing

Probability Requirement for Constraints Removal

Decision Variables' self-constraints

One extensive form with much reduced size.

L-shaped Method

[Slyke, Wets, et. al., 1969]

We give the name L-shaped linear programs to linear programs of the form: Minimize

$$z = c^1 x + c^2 y$$

$$A^{11}x = b^{1},$$
 $A^{21}x + A^{22}y = b^{2},$
 $x \ge 0, y \ge 0,$

Numerical Experiments

ERCOT System

5889 Buses; 7220 Branches; 523 Power Plants;

76 Aggregated Wind Farms;

9710.4 MW Installed Wind Capacity;

Represent 85% of Texas Demand.

Source: ERCOT.com

Numerical Experiments

Computation time for stochastic look-ahead scheduling simulation (Unit: Seconds, 100 Scenarios, 96 Intervals)

Numerical Experiments

Problem Formulation Size for Look-ahead Scheduling

Look-ahead Horizon	45 mins	90 mins	180 mins
Deterministic Look- ahead Scheduling	5028 X 25707	10056 X 51414	20169 X 102828
Stochastic Look-ahead Scheduling (Extensive approach)	36454 X 188468	72908 X 376936	177299 X 753872
Stochastic Look-ahead Scheduling (Enhanced PH)*	3776 X 11472	6504 X 26376	8568 X 44776
% of Original Problem Size (Row 2)	<u>0.63%</u>	<u>0.62%</u>	<u>0.28%</u>

^{*} For enhanced PH, the original formulation has the same size as extensive approach does. What is shown is the size of the final reduced form.

Summary

- We developed a stochastic look-ahead dispatch framework for (near)-real-time operation
- We proposed a data driven criterion for stochastic programming applicability and horizontal partition.
- We designed enhanced hybrid computational framework of progressive hedging and L-shaped method for efficient & parallel computation.
- Future work:
- LMP studies under stochastic economic dispatch

References

- L. Xie, P. M. S. Carvalho, L. A. F. M. Ferreira, J. Liu, B. H. Krogh, N. Popli, and M. D. Ilic, "Wind integration in power systems: operational challenges and possible solutions," *Proceedings of the IEEE*, vol. 99, pp. 214-232, 2011.
- J. P. Watson and D. Woodruff, "Progressive hedging innovations for a class of stochastic mixedinteger resource allocation problems," *Computational Management Science*, vol. 8, pp. 355-370, 2011
- Y. Gu, L. Xie, and X. Wang, "Horizontal Decomposition-based Stochastic Day-ahead Reliability Unit Commitment," in IEEE PES General Meeting, Vancouver, 2013, pp. 1-5.
- Y. Gu and L. Xie, "Early Detection and Optimal Corrective Measures of Power System Insecurity in Enhanced Look-Ahead Dispatch," *IEEE Transactions on Power Systems*, vol. 28, pp. 1297-1307, 2013.
- R. Van Slyke and R. Wets, "L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming," SIAM Journal on Applied Mathematics, vol. 17, pp. 638-663, 1969.
- J.-P. Watson and D. Woodruff, "Progressive hedging innovations for a class of stochastic mixedinteger resource allocation problems," *Computational Management Science*, vol. 8, pp. 355-370, 2011.
- S. M. Ryan, R. J. B. Wets, D. L. Woodruff, C. Silva-Monroy, and J. P. Watson, "Toward scalable, parallel progressive hedging for stochastic unit commitment," in *Power and Energy Society General Meeting (PES)*, 2013 IEEE, 2013, pp. 1-5.

References

- J. P. Watson, D. L. Woodruff, and W. E. Hart, "Pysp: Modeling and solving stochastic programs in python," Technical report, Sandia National Laboratories, Albuqueque, NM, USA2010.
- L. Xie, Y. Gu, X. Zhu, and M. G. Genton, "Power system economic dispatch with spatio-temporal wind forecasts," in *Energytech*, 2011 IEEE, 2011, pp. 1-6.
- D. Bertsimas, E. Litvinov, X. A. Sun, Z. Jinye, and Z. Tongxin, "Adaptive Robust Optimization for the Security Constrained Unit Commitment Problem," *Power Systems, IEEE Transactions on*, vol. 28, pp. 52-63, 2013.
- L. Xie, Y. Gu, X. Zhu, and G. M. G., "Short-Term Spatio-Temporal Wind Power Forecast in Robust Look-ahead Power System Dispatch," Smart Grid, IEEE Transactions on, vol. 5, pp. 511-520, 2014.
- Y. Gu and L. Xie, "Fast Sensitivity Analysis Approach to Assessing Congestion Induced Wind Curtailment," *Power Systems, IEEE Transactions on*, vol. 29, pp. 101-110, 2014.
- J. Wang, M. Shahidehpour, and Z. Li, "Security-Constrained Unit Commitment With Volatile Wind Power Generation," Power Systems, IEEE Transactions on, vol. 23, pp. 1319-1327, 2008.
- L. Xie, Y. Gu, A. Eskandari, and M. Ehsani, "Fast MPC-Based Coordination of Wind Power and Battery Energy Storage Systems," *Journal of Energy Engineering*, vol. 138, pp. 43-53, 2012/06/01 2012.
- Y. Gu, L. Xie, B. Rollow, and B. Hesselbaek, "Congestion-induced wind curtailment: Sensitivity analysis and case studies," in *North American Power Symposium (NAPS)*, 2011, pp. 1-7.

Thank You!

Questions and Answers

